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a b s t r a c t

A broadband, duct noise reflection mechanism is introduced in this theoretical study. It

consists of side-branch cavities filled with a light gas, e.g. helium, and covered by

impervious, tensioned membranes as two apertures, one at the inlet and another at the

exit. Incident waves are scattered by the membranes into two passages, one through the

central duct and another through the cavity bypass. Due to the faster speed of sound in

the bypass, a Herschel–Quincke tube resonance appears and gives a peak in the

transmission loss spectrum. Another resonance occurs when the frequency of

the incident sound coincides with the vibroacoustic frequency determined by the

membrane tension and inertia contributions from the membrane and the fluid media.

With appropriate tensile stress, the trough between the two spectral peaks can be

elevated to a desirable high level, e.g. 10 dB, and the crucial factor is identified as the low

density of the cavity gas filling. The broadband sound reflection performance is

comparable with and even exceeds that of the drum-like silencer [L. Huang, Parametric

study of a drum-like silencer, Journal of Sound and Vibration 269 (2004) 467–488] with

the same cavity geometry, but the current mechanism requires a low tensile stress

which is much easier to implement in practice.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Low frequency noise is often dominant in the environmental noise spectrum. In the well established noise criterion (NC)
curve [1], the sound pressure level increases by about 6 dB when the frequency is halved in the region below about 500 Hz.
Fortunately, the human hearing sensitivity also drops when frequency reduces. If one takes the A-weighting curve as a
rough guide for such hearing sensitivity variation, the slope of 6 dB/octave is roughly matched by that of the A-weighting
curve from 250 to 500 Hz. The main motivation for developing the technique of low frequency noise control is the current
lack of effective passive control method. Using the traditional duct lining along a typical ventilation duct of 30 cm in
dimension as an example, the typical attenuation rate for a noise of 100 Hz is about 5 dB/m of lining (cf. Fig. 9.22 of [2]).
This rate drops rapidly as frequency further decreases. In fact, untreated low frequency noise, such as that in the octave
bands of 63 and 31 Hz, could cause uncomfortable vibration of light-weight structures, which is the familiar rumbling near
many air handling facilities. This problem is highlighted by the recently developed RC curves mark II [3], and is also
elucidated very well in a recent review on room noise control [4].

Traditionally, passive control of low frequency noise relies heavily on the structural resonance; membrane and plate
have been used in many cases and their main effect has been the mass required to achieve such low frequency resonance,
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e.g. [5–7]. Recently, however, a different approach has been proposed by our group [8–14], which utilizes the full sound-
structure coupling to achieve a broadband control in the low frequency region. As shown in Fig. 1(a), the basic prototype
tested [10] resembles an expansion chamber with two side-branch cavities, each covered by a tensioned membrane.
Incident sound wave induces the membrane to vibrate, and the vibration radiates secondary sound waves into both
upstream and downstream. The upstream radiation represents sound reflection, while the downstream radiation interferes
destructively with the incident wave, leading to noise attenuation in the downstream region. The acoustics of this
interference is similar to that of a working rig of active duct noise control. The difference, which is an important one, is that
the drum-like silencer is purely reactive and the destructive interference is guaranteed since the incident wave is the sole
source of sound power. In order to achieve a broad stop-band, the tension required is typically on the same order of
magnitude of the tensile strength of metallic alloys, hence the name ‘drum-like’. This is explained as follows. The sound
induced membrane vibration may be expanded into in vacuo modes described by displacement Zj / sinðjpx=LÞ, where L is
the membrane length and j is the mode number. The first in vacuo mode, j ¼ 1, is effective in generating reflecting sound,
but is difficult to excite due to the air stiffness in a compact cavity, the compactness being a desirable design attribute. In
other words, the cavity volume controls the first mode. The second in vacuo mode, j ¼ 2, is easier to excite but is less
effective in reflecting sound as it is a dipole-like radiator. The effectiveness of the second mode depends on the ratio of the
membrane length to the wavelength. In other words, it requires long membranes to reflect low frequency waves. For long
membranes to respond in low order modes, high tension is required to keep the membrane to vibrate together. It is clear
that the required tension would exceed the tensile strength of the material if the reflection of very low frequency is desired.
It is also discovered later that, when the membrane is replaced by a light and stiff plate [13], equivalent or even better
broadband performance is possible, but the requirement of high stiffness together with low mass again stretches to the
limit of existing bulk materials [14]. The current study is motivated by the search for an alternative device for very low
frequency noise control without using materials to their limit. The search has revealed that the acoustic mechanism of the
traditional Herschel–Quincke (HQ) tube, shown in Fig. 1(b), would help relieve such limitation. The resulting device has a
mechanism which is quite different from that of the drum-like silencer, and its appearance resembles the musical
instrument of flute.

The device of Herschel–Quincke tube was introduced in the 19th century and its theory [15] has recently been re-
examined [16]. When the length of the bypass, Lb in Fig. 1(b), is exactly half of a wavelength longer than the main passage
(Ld), Lb � Ld ¼ l=2, where l is the wavelength, the bypass plus this segment of the main duct becomes an acoustic branch
with zero impedance seen by the incident wave. All sound waves are reflected. When Ld ! 0, the HQ tube is reduced to the
standard quarter-wavelength resonator, shown in Fig. 1(c), the physics of which is somewhat easier to comprehend. For the
HQ tube with the bypass having the same cross section as the main duct, the following physical explanation may be offered
without involving the complex details of a full analysis presented in Section 2. Sound waves transmitted through the
upstream junction propagate through the main duct and the bypass, and reach the downstream junction for further
transmission to the exit duct. The transmitted waves from the two routes differ by a phase angle of p and cancel each other.
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Fig. 1. Reactive silencers: (a) drum-like silencer [13], (b) Herschel–Quincke tube, which is equivalent to (c) a quarter-wavelength resonator when the duct

passage length Ld vanishes.
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Fig. 2. Illustration of a symmetric half of a flute-like silencer.
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The downstream junction is a pressure nodal point in a standing wave, and no transmitted wave is actually found in the
exit duct. The two waves approaching the downstream junction simply proceed to the opposite passage and eventually
return to the upstream junction, having gone through exactly the same total length of Ld+Lb. Further reflections by the
upstream junction repeat what is described above. A second type of resonance occurs when the two routes combine to
form an exact number of wavelength, e.g. Lb þ Ld ¼ l. Similarly, zero transmitted wave is found in the exit duct, which is in
effect also ignored by the waves passing through the downstream junction. Details of what happens in this resonance differ
from that of type-1, and its physics will be explained in Section 2 after the basic equations needed, Eq. (1), are established
and interpreted.

In an effort to reduce the membrane tension required by the drum-like silencer shown in Fig. 1(a), the long membrane is
now broken into two short pieces and set apart by a segment of solid wall. The new configuration is shown in Fig. 2 for the
lower symmetric half. Without the membranes, the device resembles an HQ tube in which the bypass is completely aligned
with the duct segment. The use of the membranes also provides a possibility that the bypass can be filled with a gas other
than the ambient fluid in the main duct, namely air. When a light gas, such as helium, is used, the wave propagation
through the bypass is faster than that in the main duct since the bypass has essentially the same length as the main duct.
When the time difference between the two acoustic routes becomes half of a period, a resonance peak is expected to occur
in a way similar to that of the first type HQ resonance. It is shown in this study that another spectral peak appears when the
membrane resonates with the fluids in the bypass and in the main duct, or when the inertance of the membrane and fluids
is balanced by the effect of membrane tension. The trough between the two spectral peaks can be made much higher than
that between two neighbouring HQ resonance peaks. The new device resembles the musical instrument of flute and the
membranes will be called apertures. Similar to the drum-like silencer, the membrane aperture can also be replaced by a
plate, but, unlike drum-like silencer, it is found that there is no difference in performance between the two types of
apertures, and the choice can be made by implementation convenience.

In what follows, Section 2 analyses the problem shown in Fig. 2 based on the plane-wave assumption suitable for the
low frequency regime. The results are then validated and improved in Section 3 by a full numerical solution. The effects of
various aperture design, and the deviation between the plane-wave solution and the full numerical solution, are examined
before conclusions are drawn in Section 4.

2. Plane-wave analysis

As shown in Fig. 2, the duct has a height of h and only the lower symmetric half of height h/2 is analysed in this problem.
The cavity has a length of Lc and a depth of hc. Most of the cavity length is separated from the duct by a solid wall except
two apertures, each with length Lm, one at the upstream and another at the downstream ends of the cavity. The apertures
are covered by impervious membranes so that a gas medium different from air can be filled in the cavity. It is shown later
that the effects of mass and stiffness from the two membranes are essentially additive; simplified analysis may also be
performed by assuming one of the two membranes to be massless and without tension. For the purpose of the plane-wave
analysis for low frequencies, the pressure at the upstream region is represented by that at a point ‘U’ and the downstream
region ‘D’. The distance between the two is Ld through the duct and Lb through the bypass. If the points of ‘U’ and ‘D’ are
assumed to be at the centres of the two membranes, the bypass length may be approximated by Lb � Lc � Lm. However, this
approximation can only be tested by the full numerical solution in the next section. Length Lb is treated as a parameter in
this section, while Lc is considered in the next section.

Consider the wave propagation for a general 1D passage with uniform cross section, fluid density r and speed of sound c.
Between any two points at x ¼ x1 and x2, a standing wave is formed by a right-travelling wave of linear pressure amplitude I

and a left-travelling wave of amplitude R. The amplitudes I and R can be found by the pressures measured at the two points,
p1 and p2,

p1 ¼ Ie�ikx1 þ Reþikx1 ; p2 ¼ Ie�ikx2 þ Reþikx2 .
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Therefore,

I ¼
p1eikx2 � p2eikx1

eikðx2�x1Þ � e�ikðx2�x1Þ
; R ¼

p2e�ikx1 � p1e�ikx2

eikðx2�x1Þ � e�ikðx2�x1Þ
.

Here, and in all subsequent formulations, the time dependence of exp(iot) is assumed and k ¼ o/c is the wavenumber.
The acoustic particle velocity at the two points, u1 and u2, are found in terms of p1 and p2,

u1 ¼
Ie�ikx1 � Reþikx1

rc
; u2 ¼

Ie�ikx2 � Reþikx2

rc
.

Substituting expressions for I and R, the following equations are obtained:

u1 ¼
p1 cos y� p2

irc sin y
; u2 ¼

p1 � p2 cos y
irc sin y

, (1)

where y ¼ kðx2 � x1Þ is the phase difference, or angular distance.
Eq. (1) shall be used below to explain the physics of HQ tube resonance. It is necessary to build the right physical

intuition from a full interpretation of these results. First of all, the results are most conveniently seen as a direct application
of Newton’s second law of motion, in which the pressure difference at the two points, 1 and 2, gives the net force applied
per unit duct cross section, and the product of velocity u1;u2 with the denominator, irc sin y, can be rewritten as follows:

uðirc sin yÞ ¼ ½sinðyÞ=y�½rðx2 � x1Þ�qu=qt.

The right-hand side of the above expression represents the inertia for the whole chunk of air between the two points with
effective mass modified by a factor of sin y=y. This mass modification factor accounts for the fact that not all particles are
moving in step and particles at nodal points do not move at all. For very short length, x2 � x1 ! 0, the chunk of air conducts
rigid-body motion with the familiar momentum equation recovered, rðx2 � x1Þqu1=qt � ðp1 � p2Þ. The mass modification
factor sin y=y tends to unity for such short length, and this settles the question of why the factor should involve sin y
instead of cos y, and that the pressure modification factor in the numerator should be cos y, instead of sin y,. The last
question to be settled is why the pressure modification factor cos y is applied on p1 when u1 is calculated, or on p2 when u2

is calculated, cf. Eq. (1). This is best appreciated by considering the special case of a quarter-wavelength y ¼ p=2 when
Eq. (1) predicts u1 ¼ �p2=ðircÞ. If point 2 is a rigid wall where the amplitude of p2 reaches its maximum, point 1 should be
a velocity maximum while point 2 is a velocity nodal point. It is evident that the way the pressure modification factor is
applied is consistent with the common observation that pressure and velocity peak at different points in a standing wave,
whose behaviour differs from a chunk of rigid body.

As mentioned in Section 1, type-2 HQ tube resonance occurs when the combined length of the bypass and the main duct
forms one complete wavelength, Lb þ Ld ¼ l, where Lb and Ld are shown in Fig. 1(b), for the simple configuration in which
the bypass has the same cross section as the main duct, Ab ¼ Ad. Denote the angular distance for the two passages as
yd ¼ kLd and yb ¼ kLb ¼ 2p� yd, the rate of total volume flow arriving at the downstream junction, denoted as point 2,
from the two passages is

Q2 ¼ Ad
p1 � p2 cos yd

irc sin yd
þ Ab

p1 � p2 cos yb

irc sin yb
,

where p1 and p2 are the pressures at the upstream and downstream junctions, respectively. The relationship yb ¼ 2p� yd
means that cos yb ¼ cos yd; sin yb ¼ � sin yd, and that the two components of the volume flow amount to a total of zero,
Q2 ¼ 0, when Ab ¼ Ad. The main reason for such outcome, sin yb ¼ � sin yd, reflects the fact that the total effective mass for
the two branches is zero as the motion of all air particles in one wave cycle balances themselves out. With no volume flow
into the downstream junction, no outflow is found in the exit duct as the waves arriving from the bypass at the
downstream junction go back to the upstream junction through the main duct passage, while those through the main duct
proceed to the bypass. In other words, the waves travel in a loop formed by the two branches and the exit duct is effectively
ignored. It can be shown by the full analysis below that the strength of the two waves travelling in this loop is determined
by the requirement that the downstream junction is a pressure node, and the upstream an anti-node. It is easily shown that
the total volume flow leaving the upstream junction is also zero,

Q1 ¼ Ad
p1 cos yd � p2

irc sin yd
þ Ab

p1 cos yb � p2

irc sin yb
¼ 0.

The upstream junction is a velocity nodal point in type-2 resonance.
Similar analysis for type-1 HQ resonance for Lb ¼ Ld þ l=2 is less straight-forward but is still feasible. The volume flow

converging towards the downstream junction

Q2 ¼ Ad
p1 � p2 cos yd

irc sin yd
þ Ab

p1 � p2 cos yb

irc sin yb

becomes Q2 ¼ �2Adðp2 cos yd=irc sin ydÞ when the relationships of cos yb ¼ � cos yd; sin yb ¼ � sin yd are used. This
total volume flow has to flow out through the exit duct in which only one single travelling wave is allowed, in which case
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the volume flow must be in phase with the junction pressure due to p ¼ rcu in the exit duct. Since the arriving
volume flow, Q2, is out of phase with p2, as indicated by ‘i’ in the denominator of the above expression. The only possible
outcome is Q2 ¼ 0;p2 ¼ 0, which is the same as for the type-2 resonance but for different reasons. This time, the total
volume flow leaving the upstream junction does not vanish, Q1 ¼ Adð2p1 cos yd=irc sin ydÞa0, contrasting with the type-2
resonance.

Having offered the physical explanation for the traditional HQ tube resonance, the attention is now turned to the flute-
like silencer. As shown in Fig. 2, four pressure taps are placed and they are labelled as ‘U’, ‘D’, ‘C’ and ‘E’ for the upstream,
downstream, cavity upstream and cavity downstream regions, respectively. The pressure difference between ‘U’ and ‘C’,
denoted as DpCU ¼ pjy¼0� � pjy¼0þ, drives the upstream membrane vibration, and that between ‘D’ and ‘E’ drives the
downstream membrane vibration. It is shown below that the membranes can be replaced by plates and they can have the
same performance with suitable parametric relations. For the upstream membrane occupying x 2 ½0; Lm�, the dynamics of
the membrane vibration is written as

m0
q2Z
qt2
¼ T0

q2Z
qx2
þDpCU ,

where m0 is the mass per unit axial length, T0 the membrane tension per unit width in the direction perpendicular to the
2D plane being studied here. This equation may be integrated over its length,

m0o2
Z Lm

0
Zdxþ T0

qZ
qx

� �x¼Lm

x¼0
þ

Z Lm

0
DpCU dx ¼ 0

to give the relationship between the integrated pressure forces and the rate of volume displacement by the vibrating
membrane. To do so, it is tactically assumed, and later verified by the full numerical solution, that the fundamental mode of
vibration dominates when the excitation frequency is low and the tension is sufficiently high. The displacement is
Z � Z1 sinðpx=LmÞeiot , where Z1 is the modal amplitude. Substituting this displacement into the above dynamics equation
and letting Z Lm

0
DpCU dx ¼ LmðpC � pUÞ,

where pC and pU are the local average values of pressure around ‘C’ and ‘U’, respectively, one obtains the complex amplitude
of the mean upward vibration velocity

vm ¼
pC � pU

im0ðo�o2
1o
�1Þ

, (2a)

where vm is defined below together with the first mode in vacuo resonance frequency o1,

vm ¼
1

Lm

Z Lm

0

qZ
qt

dx �
2

p
ðioZ1Þ; o1 ¼

p
Lm

ffiffiffiffiffiffiffi
T0

m0

s
. (2b)

When a clamped plate is used, the dynamics equation and the solution for the in vacuo modes are given below,

B0q
4Z=qx4 þm0q

2Z=qt2 ¼ 0; Zð0Þ ¼ Zxð0Þ ¼ ZðLmÞ ¼ ZxðLmÞ ¼ 0,

Z ¼ C1½sinðkpx=LmÞ � sinhðkpx=LmÞ� þ C2½cosðkpx=LmÞ � coshðkpx=LmÞ�,

where B0 and m0 are the plate stiffness per unit width and mass per unit axial length, respectively, kp and C2/C1 take the
following characteristic values:

kp

p ¼ 1:5056;2:4998;3:5000;
C2

C1
¼

cos kp � cosh kp

sin kp þ sinh kp
¼ �1:0178;�0:9992;�1:000

for the first three modes, respectively.
For the plate vibration driven by the acoustic pressure difference, the dynamics equation

B0q
4Z=qx4 �m0o2Z ¼ DpCU

is integrated for the assumed first mode to give the following mean vibration velocity:

vm ¼
1

Lm

Z Lm

0

qZ
qt

dx ¼
pC � pU

im0ðo�o2
1o
�1Þ

; o1 ¼
1:5056p

Lm

� �2
ffiffiffiffiffiffiffi
B0

m0

s
(3)

which has the same form of pressure–velocity relationship as Eq. (2a).
The pressure at junction ‘U’ is a combination of incident (I0) and reflection (R0) waves; while that downstream of

junction ‘D’ consists purely of the transmitted wave whose complex amplitude is denoted as pD,

pjx�xU
¼ I0 e�ik0ðx�xU Þ þ R0 eþik0ðx�xU Þ; pU ¼ I0 þ R0; pjx�xD

¼ pD e�ik0ðx�xDÞ, (4a)
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where k0 ¼ o=c0 is the wavenumber in the main duct. The acoustic particle velocity at the left-hand side of point ‘U’,
denoted by uUL, is uUL ¼ ðI0 � R0Þ=ðr0c0Þ, in which R0 can be substituted by Eq. (4a), R0 ¼ pU�I0, hence

r0c0uUL ¼ 2I0 � pU . (4b)

The volume flow rate into point ‘U’ from upstream, AduUL, where Ad is the duct cross section, or h/2 for the lower half of the
2D channel considered here, is divided into two streams: one flowing from ‘U’ to ‘D’, denoted as uUR, which is derived from
the general expression of Eq. (1), and another into the cavity at velocity �vm, where vm is given in Eq. (2a), or Eq. (3) for a
plate. The volume flow conservation reads 1

2huUL ¼
1
2huUR þ Lmð�vmÞ, which becomes, after multiplying the specific

impedance of the ambient fluid r0c0, and utilizing Eqs. (1), (2a), and (4b),

h

2
ð2I0 � pUÞ ¼

h

2
�

pU cos k0Ld � pD

i sin k0Ld
� Lmr0c0

pC � pU

im0ðo�o2
1=oÞ

¼ 0.

The above equation is rewritten as

2iI0 ¼ pUðiþ cot y0 þ amÞ � pD cscy0 � pCam, (5a)

where

am ¼
2r0c0Lm=h

m0ðo�o2
1=oÞ

¼
2r0Lm

m0

oh

c0
�
o2

1h

oc0

 !�1

and y0 ¼ k0Ld (5b)

are the dimensionless membrane vibration admittance and the duct passage length in radian, respectively. The second
volume flow continuity is the equality of the membrane velocity and the particle velocity in the cavity passage evaluated at
the upstream end by substituting p1 and p2 in the u1 expression of Eq. (1) by pC and pE:

�Lmvm ¼ hc
pC cos yb � pE

irccc sin yb
; yb ¼ kcLb,

where subscript ‘c’ signifies cavity in the above expression, kc ¼ o=cc is the wavenumber in the cavity, Lb the effective
bypass length inside the cavity and yb the angular passage length in the bypass. Substituting vm from Eq. (2a) into the above
equation

ampU � ðam þ ac cotybÞpC þ ðac cscybÞpE ¼ 0, (6a)

where

ac ¼
2r0c0hc

rccch
(6b)

is a dimensionless acoustic admittance for the cavity passage. The third volume flow continuity is that the volume flow into
the membrane at ‘E’ is the same as the volume displacement by the downstream membrane,

Lmv0m ¼ hc
pC � pE cos yb

irccc sin yb
; v0m ¼

pE � pD

im00ðo�o
02
1 =oÞ

,

where primes distinguish the downstream membrane from the upstream one. Making use of the membrane admittance
defined in Eq. (5b), one obtains

a0mpD � ða
0
m þ ac cot ybÞpE þ ðac cscybÞpC ¼ 0. (7)

The last volume flow continuity at junction ‘D’ is similar to that at ‘U’: the cavity stream converges with the main duct
stream at point ‘D’ and they form the transmitted wave downstream,

Lm
pE � pD

im00ðo�o
02
1 =oÞ

þ
h

2
�

pU � pD cos y0

ir0c0 sin y0
¼

h

2
�

pD

r0c0
.

The above equation is also rewritten as

a0mðpE � pDÞ þ pU cscy0 � pD coty0 ¼ ipD. (8)

Eqs. (5a), (6a), (7) and (8) can be collected in a matrix form

iþ coty0 þ am �am 0 �cscy0

�am am þ ac cotyb �ac cscyb 0

0 �ac cscyb a0m þ ac cotyb �a0m
�cscy0 0 �a0m iþ coty0 þ a0m

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

pU

pC

pE

pD

2
66664

3
77775 ¼ 2iI0

1

0

0

0

2
6664

3
7775, (9)
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where the coefficient matrix is denoted as M. The set of equations can be solved for the pressure transmission ratio pD=I0,

pD

I0
¼

2iDD

detðMÞ
; DD ¼

�am am þ ac cotyb �ac cscyb

0 �ac cscyb a0m þ ac cotyb

cscy0 0 a0m

�������
�������. (10)

System resonance occurs when pD ¼ 0, or DD ¼ 0, where DD is expanded below,

DD ¼ ama0mac cscyb þ cscy0ðam þ ac cotybÞða
0
m þ ac cotybÞ � cscy0a2

c csc2 yb

¼ ama0mðac cscyb þ cscy0Þ þ cscy0ac cotybðam þ a0mÞ � cscy0a2
c ,

and the resonance condition rewritten as

DD sin y0 sin yb

ama0m
¼ ðac sin y0 þ sin ybÞ þ ðzm þ z0mÞac cos yb � zmz0ma2

c sin yb ¼ 0 (11a)

with the introduction of the membrane impedance zm defined below,

zm ¼ a�1
m ¼

m0

2r0Lm

oh

c0
�
o2

1h

oc0

 !
; z0m ¼

m00
2r0Lm

oh

c0
�
o021 h

oc0

 !
. (11b)

These impedance terms vanish when a massless membrane without tension is assumed.
The resonance condition DD ¼ 0 is analysed below for two cases. First, when the two apertures are taken away,

zm ¼ z0m ¼ 0, and the device becomes a pure HQ tube, the first bracket term in the right-hand side of Eq. (11a) vanishes,
which is listed below together with the definition of cavity admittance for easier analysis,

ac sin k0Ld þ sin kcLb ¼ 0; ac ¼ ð2r0c0hcÞ=ðrccchÞ. (12)

When the cavity is not filled with a different gas, kc ¼ k0, and when the two bypass cross section combined is equal to the
main duct height, 2hc ¼ h, one has ac ¼ 1 and Eq. (12) becomes sin k0Ld þ sin k0Lb ¼ 0. As shown in [16] and mentioned
also in Section 1, the first type of HQ tube resonance occurs when k0Ld ¼ k0Lb � ð2nþ 1Þp, where n is an integer. In other
words, when the differential path Lb � Ld is an odd multiple of l/2. The second type of resonance occurs when
k0Ld ¼ 2np� k0Lb, or when the combined path Lb þ Ld is an integer multiple of l. If the cavity is filled with a light gas, and
it is not much longer than the duct segment, Lb � Ld, the resonance condition requires k0Ld to exceed p, or Ld4l/2.
Otherwise the bypass Lb must exceed half a wavelength. As shown below, this constraint is removed by the use of a
membrane or plate aperture illustrated in Fig. 2.

Returning now to the resonance condition for the second case in which a membrane or plate aperture is employed. Not
much further analysis can be made for Eq. (11a) to obtain a closed-form resonance frequency unless some knowledge is
given for the aperture design. If a single aperture is used, z0m ¼ 0, the condition of Eq. (11a) becomes

ðzmacÞsingle ¼ �
ac sin y0 þ sin yb

cos yb
(13a)

which can be shown (see below) to give the single aperture resonance frequency osingle,

o2
single �

m0o2
1=Lm

m0=Lm þ 2r0Ld=hþ rcLb=hc
, (13b)

provided that the resonance frequency is found in the low frequency region. If two identical apertures are used, zm ¼ z0m,
Eq. (11a) gives

ðzmacÞtwin ¼
cos yb

sin yb
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

sin ybðac sin y0 þ sin ybÞ

cos2 yb

s !
. (14)

Eqs. (14) and (13a) do not look similar in the first place, but can be shown to be similar when the resonance is again
assumed to occur in the low frequency region. Using the approximation of sin x � x; cos x � 1 and expanding the square-
root in Eq. (14),

ðzmacÞtwin �
2

yb
;�

acy0 þ yb

2
.

The first of the two roots above is not a valid low frequency solution, but the second one is. Noting that zm; y0;yb all contain
o, the second root can be rewritten for the low-frequency, twin-aperture solution,

o2
twin �

2m0o2
1=Lm

2m0=Lm þ 2r0Ld=hþ rcLb=hc
(15)
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which is similar to Eq. (13b) except that m0 in the latter is replaced by 2m0 in Eq. (15). In both formulas, the product of
m0o2

1 ¼ p2T0=L2
m is essentially the tensile force for the membrane, or 4:7304B0=L4

m for a plate. So, the numerator in Eq. (15)
contains the combined structural restoring forces, and the denominator combines all terms of inertia. In other words, the
effects of aperture masses and structural restoring forces are additive in the low frequency limit. The two fluid terms are
proportional to the density and the length as the fluid in the whole length move in phase at low frequencies. They are
inversely proportional to the channel width as wide channel means smaller velocity for a given volume flow rate. The same
principle applies to the membrane term where denominator Lm represents a cross sectional width instead of passage
length. The sum over the three inertia terms implies that the acoustic particle oscillation is circulating around the duct and
through the cavity, very much like the second type of resonance in the HQ tube where the combined length Ld þ Lb is equal
to the wavelength (when Ad ¼ Ab). Note that such simplistic pattern of particle velocity is not found for any particular
moment due to the presence of standing waves in both the duct segment and the bypass. Notice also that Eq. (15) is
quantitatively valid only if the resonance frequency is very low.

The usual HQ tube resonance is expected to occur with modification by the aperture and cavity gas properties, but
further simplified analysis is not as straight-forward. Solution for pD in Eq. (10) can be computed without further
approximation, and the results for the performance of pure HQ tube is given in Fig. 3 by setting m0 ¼ m00 ¼ 0 and tactically
allowing different gas filling in the bypass. The downstream aperture shown in dashed line in Fig. 2 is intended to describe
such hypothetic setting at an aperture. A bypass length of Lb ¼ 10h is assumed for all cases shown in Fig. 3, and the cavity
filling is air for all but two curves in Fig. 3(c). Fig. 3(a) studies the effect of varying the ratio of the bypass cross section to
the duct cross section, Ab/Ad. The thick dashed line is for Ab/Ad ¼ 1, while the other two lines are for 0.75 and 1.25,
respectively. The overall pattern repeats with a dimensionless frequency interval of f ¼ 0.2, where f is defined below
together with other dimensionless parameters,

f ¼
oh

2pc0
; m ¼

m0

r0h
; B ¼

B0

r0c2
0h3

; T ¼
T0

r0c2
0h

. (16)

An example of dimensional size may be helpful here. For a duct of height h ¼ 0.3 m, the dimensionless frequency of f ¼ 0.1
means 113.3 Hz and a membrane mass ratio of m ¼ 0.25 means a thickness of 0.034 mm for aluminium. As shown in
Fig. 3(a), below f ¼ 0.2, there are three peaks around f ¼ 0.2/3, 0.3/3, 0.4/3 and they are the second, first and second types of
HQ resonance, respectively. The middle peak is the first type resonance with the differential path of Lb � Ld ¼ l=2. When Ab

increases, the trough between peaks is elevated as peaks move closer together, and the peaky spectrum becomes rather
rounded, like that of an expansion chamber, when Ab/Ad ¼ 5 (dash–dot line). In Fig. 3(b), a very short main duct length is
set, Ld ¼ 0.5h, while Lb ¼ 10h is kept unchanged. The spectrum is rather close to that of a standard quarter-wavelength
resonator illustrated in Fig. 1(c). The first four peaks for the case of Ab/Ad ¼ 1 are for the first type resonance (Lb � Lb ¼ l=2),
second type resonance (Lb þ Ld ¼ l), the higher-order first type resonance Lb � Lb ¼ 1:5l, and the higher-order second type
resonance (Lb þ Ld ¼ 2l), respectively. The spectral peak for the second type resonance is very narrow.
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Fig. 3. The performance of the pure HQ tube: (a) effect of the bypass area, (b) reduction of HQ tube into a quarter-wavelength resonator, and (c) effect of

bypass gas filling. The bypass length is Lb ¼ 10h for all cases.
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Fig. 3(c) investigates the effect of cavity filling with different gases while the equilibrium or static pressure, P, is held the
same as that in the main duct. Note that P ¼ grcc2

c and the ratio of specific heats, g ¼ cp=cv, can be different from that of air
depending on the type of gas used. However, g is chosen to be the same as air (g ¼ 7=5) for this particular example since the
gas is not actually specified, while that for helium follows its true value of g ¼ 5=3 in later examples. It is clear from Eq. (12)
that, when rc #; cc ", the effective bypass length is decreased due to the faster wave speed, as shown in kcLb ¼ oLb=cc ,
while the effective bypass cross section is increased due to the decreased specific acoustic impedance rccc , as shown by the
parameter ac which contains hc=ðrcccÞ. In other words, in order to give exactly the same sound propagation time, the length
of a helium bypass should be increased. It is possible to achieve exactly the same HQ tube performance with a longer but
narrower bypass when a light gas is used, or a shorter and wider bypass when a heavy gas is used. When the effective
length and cross section are not kept constant, resonance peaks shift, as shown in Fig. 3(c). It is shown below that, when an
aperture is used, the effect of a different bypass gas can provide clear acoustic benefit instead of simple pattern shifts.

When at least one aperture made of a plate or a membrane is installed, the device becomes a flute-like silencer. A fluid-
structure coupled resonance is expected to occur at a frequency approximated by Eq. (13b) for the single-aperture design,
or Eq. (15) for the design of two identical apertures at the two ends of the bypass. The effect of the aperture can be
investigated by comparing its spectrum of transmission loss (TL) with the same device without aperture (zm ¼ z0m ¼ 0) but
with the cavity filled with the same gas as described above. In Fig. 4, spectral comparison is made between such a single-
aperture, flute-like silencer and the HQ tube of the same geometry and helium filling in the cavity. For the flute-like
silencer, the following design parameters are adopted:

Ld ¼ 4h; Lm ¼ h; Ab ¼ 2hc; hc ¼ h,

Lb ¼ Ld � Lm þ phc=2 ¼ 4:057h,

rc ¼ 0:13r0; cc ¼ 3:0261c0; m ¼ 0:25, (17)

where the bypass distance Lb is calculated heuristically by drawing a quarter of a circle of radius hc/2 around points ‘U’ and
‘D’ in Fig. 2, respectively. Results for the two values of tension are shown in Fig. 4, T ¼ 0.02 and 0.042, the latter value being
chosen to allow the trough between the first two peaks to exceed 10 dB. If such a 10 dB threshold is used, as was done for
earlier studies on drum-like silencer of similar geometry [12], the stop-band is f 2 ½0:031; 0:141� for T ¼ 0.042 (solid line in
Fig. 4), with a bandwidth over two octaves, 0.141/0.031 ¼ 4.644. The first two peaks occur at f ¼ 0.0343 and 0.1352. The
frequency of the first peak should be approximated by Eq. (13b), which gives f ¼ 0.0345. The approximation is very close to
the actual resonance and is shown with a label ‘fres’ in the figure. When the two-aperture design is used with the mass of
m ¼ 0.25 divided into two halves, m ¼ 0.125 for each, a tensile stress level with T ¼ 0.015 is required to elevate the trough
above 10 dB with almost identical overall TL pattern. However, the resonance frequency approximation of Eq. (15) under-
predicts by about 15 percent, and the reason is that the location of the resonance peak does not really satisfy the ‘low-
frequency’ assumption required to expand the square-root term in Eq. (14) by the simple Taylor series of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� 1þ x=2,
which is valid only for |x|o1. That term involves the passage length which may not be very short compared with the
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Fig. 4. Comparison between a twin-aperture, flute-like silencer with HQ tube, both with cavity filled by helium. Other design parameters are given in (17).
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wavelength, but the failure of this particular expansion does not affect the overall validity of the low frequency
approximation which only requires that the dimension of the cross section is much shorter than a wavelength.

The TL for the helium-filled HQ tube is found by setting T ¼ 0, m ¼ 0 in the code, and the result is shown in Fig. 4 as the
line with open circles. It overlaps with the flute-like silencer for most of the frequencies around and higher than the second
resonance peak of f ¼ 0.1325. In other words, the aperture does not have much influence in this frequency regime, which
can be explained as follows. The stiffness term is important only at very low frequencies, and the inertia term is important
at higher frequencies but the dimensionless mass of m ¼ 0.25 is low. When a much higher mass ratio is set, obvious
deviation could appear. However, the TL performance would be rather poor and such design is of little practical interest and
is thus excluded from further consideration. The effect of mass and issues of practical implementation are discussed in
Section 4. The flute-like silencer with a lower level of tension T ¼ 0.02 produces similar spectrum (dash–dot line) with a
lower first resonance frequency. The second peak also overlaps with the HQ resonance and is almost unchanged.

The nature of the HQ tube resonance shown by the dash–dot line of Fig. 4 is further analysed as follows. The two
resonance peaks shown in Fig. 4 are at f ¼ 0.1352 and 0.2547, respectively. For the flute-like silencer shown in Fig. 2 with
the bypass filled with helium, which has lower density and higher speed of sound, the effective acoustic path is shorter in
the bypass as the wave speed is faster than that in the main duct. The HQ tube resonance condition, Eq. (11), is detailed as
follows for the above two resonance frequencies:

ac ¼ 2hc=ðrccc=r0c0Þ ¼ 2� 1=0:3934 ¼ 5:0839;

k0Ld ¼ 1:08p; 2:04p; kcLb ¼ 0:41p; 0:77p;
sinðk0LdÞ þ a�1

c sinðkcLbÞ ¼ 0:

The first resonance at f ¼ 0.1352 corresponds to the type-1 HQ tube resonance when the differential path is l/2 with ac ¼ 1.
The second resonance at f ¼ 0.2547 corresponds to the type-2 HQ tube resonance when the combined path is one
wavelength and ac ¼ 1.

3. Numerical simulation of the 2D model

In this section, full numerical simulation is employed to confirm the qualitative conclusions reached by the 1D theory
based on the plane-wave assumption suitable for low frequencies and the fundamental mode vibration for the aperture.
The method of Chebyshev collocation with domain decomposition is employed. The 2D model is shown in Fig. 5 which also
illustrates all the domain interfaces. The central symmetric line is treated as a hard wall. The half duct channel is divided
into five rectangular domains while the cavity is divided into three. The aperture dynamics is enforced by the interface
matching condition. The exit boundary satisfies the plane out-going wave condition appropriate for the low frequency
application here, and the same is true for the reflected wave through the inlet. The two sides of an interface are assigned
separate letters for easy identification of the boundary and the associated domain in computation, e.g. ‘a’ and ‘b’ are for
x ¼ 0� and x ¼ 0+, respectively, and they appear in the computation of two adjacent domains. The cavity side of the
interface uses the upper case of the same alphabet used for the duct. The basic methodology of Chebyshev collocation and
domain decomposition can be found in [17], and its implementation for a related but simpler geometry at high frequencies
is described in [18]. The particular scheme used in this study is outlined below, followed by mesh convergence tests.

The Chebyshev collocation method is a spectral method and is implemented very much like a finite difference method
on the special Gauss–Lobatto mesh of

~xn ¼ � cosðnxp=NÞ; n ¼ 0;1;2; . . . ;N

when an interval is normalized to lie within ~x 2 ½�1;þ1�. All variables are expanded in terms of the truncated Chebyshev
series, and the derivatives can be expressed by products of derivative matrices with the column vectors for the entire line of
mesh given above. By having more clustered grids near the domain boundaries, the Chebyshev expansion suppresses the
large error oscillation at the end points which occurs in other high-order, global interpolation schemes [17]. The high
accuracy is obtained at the expense of having to use fully populated matrices in the discretized system. The burden of
LU Lc LD

x=y=0
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Fig. 5. Computational domain decomposition scheme with all interfaces identified.
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solving a large set of equations is eased by domain decomposition with suitable interface matching conditions. For the
linear equation with constant coefficients, such as the one being tackled here,

q2

qx2
þ

q2

qy2

 !
pþ k2p ¼ 0, (18)

the procedure of Bartels and Stewart [19] is used to reduce the 2D problem into a two-step, 1D problem without iterations
required in methods like the ADI scheme.

For each sub-domain with one or more interfaces where values of dependent variables are unknown, the matrix of
influence is obtained in a procedure described below using the upstream domain from x ¼ �LU to 0 as an example. In this
domain, the right-hand side interface a–b has unknown pressure values while the inlet boundary condition is known but
inhomogeneous. The upper and lower boundaries are solid walls with qp=qy ¼ 0. The problem is divided into two parts. In
the first, the interface is assigned the homogeneous boundary condition of p ¼ 0 along the whole interface ‘ab’. The left-
hand side boundary condition is the plane out-going wave for the reflected part of the sound pressure,

pref ¼ p� pin ¼ �r0c0ðu� uinÞ,

where subscript ‘in’ denotes the incident wave with a prescribed pressure,

pin ¼ 1� expðiot � ik0xÞ ¼ r0c0uin.

Hence

½ikp� qp=qx�x¼�LU
¼ �2 expðþik0LUÞ. (19)

The result of this solution in this domain is denoted by a superscript ‘in’. The particle velocity derived from pressure
gradient, evaluated at the ‘a’-side of the interface ‘ab’ is denoted by uin

a ¼ ½�ðr0ioÞ�1qp=qx�x¼0� with incident wave
condition given in Eq. (19) and p ¼ 0 at the interface x ¼ 0�. The second part of the upstream domain problem is one in
which the upstream boundary condition takes the homogeneous part of Eq. (19), namely ½ikp� qp=qx�x¼�LU

¼ 0, while the
downstream interface condition is specified by the perturbation of pj ¼ 1 for the grid point of index j ¼ jp and 0 otherwise,
where jp ¼ 1;2; . . . ;M � 1 is the index of the perturbation point excluding the two end points (domain corners). The
Helmholtz equation is solved with the above boundary conditions and the value of qp=qx at the interface ‘a’ is collected as
the jpth column of the so-called influence matrix ua

a of size M�1�M�1, where M is the number of Gauss–Lobatto grid
segments for the vertical interface ‘ab’, the subscript ‘a’ denotes the location of evaluation, while the superscript ‘a’ denotes
the source of influence. Finally, the actual particle velocity at interface ‘a’ is assembled as follows:

ua 	
�1

r0io�
qp

qx

����
x¼0�

¼ uin
a þ ua

apab, (20a)

where pab ¼ pjx¼0� is the unknown, common pressure along interface ‘ab’ to be determined by a matching condition
described below. The above combination of two solutions satisfies the full incident wave condition, Eq. (19). The right-hand
side of the interface, ‘b’, receives the influence of perturbation along ‘b’ itself, along ‘c’ and from the upper side of the
aperture surface ‘q’. Using the same notation system,

ub ¼ ub
bpab þ uc

bpcd þ uq
b
vqQ , (20b)

where vqQ 	 qZ=qt ¼ ioZ is the vertical vibration velocity of the membrane. The continuity of pressure gradient, or
velocity, at ‘ab’ requires ua ¼ ub, hence the full matching condition for interface ‘ab’ becomes

ðub
b � ua

aÞpab þ uc
bpcd þ uq

b
vqQ ¼ uin

a . (20c)

The membrane velocity vqQ is related to the acoustic pressure on the membrane by the vertical momentum equation,
qp=qyþ r0qv=qt ¼ 0, hence

dðyÞpq þ r0iovqQ ¼ 0 (21)

on boundary ‘q’, where d(y) is the first order, Chebyshev derivative matrix in the y direction. The matching condition for q�Q

is different. Here, the aperture dynamics equation can be written as

m0
q2Z
qt2
� T0

q2Z
qx2
þ B0

q4Z
qx4
þ pq � pQ ¼ 0 (22)

which can be used for membrane by setting B0 ¼ 0 and for plate by setting T0 ¼ 0. Eq. (22) is discretized as follows:

miovqQ � T0=ðioÞd
ðxxÞvqQ þ B0=ðioÞd

ðxxxxÞvqQ þ ðp
q
qvqQ þ pb

qpab þ pc
qpcdÞ � ðp

Q
Q vqQ þ pC

Q pCDÞ ¼ 0,

where d(xx), d(xxxx) are the second and fourth-order derivative matrices, respectively, and pq
q is the influence matrix

(pressure) calculated on ‘q’ by the boundary condition of Eq. (21) with perturbations of the vertical velocity vqQ .
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The coefficients for vqQ in the above equation may be collected together as one matrix for later convenience,

MqQ ¼ m0io� T0=ðioÞd
ðxxÞ
þ B0=ðioÞd

ðxxxxÞ
þ pq

q � pQ
Q . (23a)

Similar matrix can be defined for the downstream aperture,

MrR ¼ m00io� T 00=ðioÞd
xxð Þ
þ B00=ðioÞd

ðxxxxÞ
þ pr

r � pR
R, (23b)

where primes denote the structural properties in the downstream aperture, and they vanish when an open aperture is
assumed.

Thus defined, all the matching conditions are collected in a grand matrix form,

ub
b
� ua

a uc
b

f0g f0g f0g f0g uq
b

f0g

ub
c uc

c � ud
d

f0g �ue
d

f0g f0g uq
c f0g

f0g f0g uC
C � uD

D f0g �uE
D f0g uQ

C f0g

f0g ud
e f0g ue

e � uf
f

f0g �ug
f

f0g �ur
f

f0g f0g uD
E f0g uE

E � uF
F f0g f0g �uR

F

f0g f0g f0g uf
g f0g ug

g � uh
h
f0g ur

g

pb
q pc

q �pC
Q f0g f0g f0g MqQ f0g

f0g f0g f0g pf
r �pF

R pg
r f0g MrR

2
66666666666666666664

3
77777777777777777775

pab

pcd

pCD

pef

pEF

pgh

vqQ

vrR

2
666666666666664

3
777777777777775
¼

uin
a

0f g

0f g

0f g

0f g

0f g

0f g

0f g

2
666666666666664

3
777777777777775

, (24)

where f0g denotes a null matrix of suitable size. The total number of degree of freedom is the sum of all interface nodes.
Numerical tests show that, typically, 8 Gauss–Lobatto segments is quite sufficient for one wavelength. The size of the
matrix in Eq. (24) is then very moderate, and no iteration method is required for its solution. Details of the mesh
convergence test are described after one numerical example is presented below to allow a better appreciation of the choice
of parameters for the test. The above method of Chebyshev Collocation with domain decomposition is abbreviated as the
‘ChC’ method, or ‘2D’, in the following discussions.

Fig. 6(a) compares the results of the ChC method with the 1D, plane-wave approximation described in Section 2,
denoted by ‘1D’ in the legend (dashed line). For the 1D prediction, the parameters are based on Eq. (17) but with membrane
tension T set at 0.017 for a twin-aperture design, each with a mass of m ¼ 0.25. This level of tension is chosen such that the
TL trough is lifted above 10 dB. For the ChC method, a cavity length of Lc ¼ Ld+Lm ¼ 5h is considered to be roughly
equivalent to the passage length of Ld ¼ 4h used in the 1D approximation. All other parameters are the same as Eq. (17). For
the same tension of T ¼ 0.017, the ChC prediction (thick solid line) gives a trough significantly higher than 10 dB. So, a lower
level of T ¼ 0.013 (thin solid line) is chosen to achieve the same level of trough. The overall TL pattern is similar in the low
frequency region despite the obvious frequency shift of the first resonance peak, which may be partly attributed to by the
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geometric mismatch between Ld ¼ 4h for the 1D method and Lc ¼ 5h for the 2D method. In the region around and beyond
the second peak, however, the difference in the TL pattern and the frequency shift are more pronounced. Note that the 1D
theory is not expected to work well in regions with relatively high frequencies.

The membrane vibration mode is studied in Fig. 6(b) for the case of T ¼ 0.013 only. Here, the vibration velocity qZ=qt is
expanded into in vacuo modes with amplitude vn,

vn ¼
2

Lm

Z Lm

0

qZ
qt

sinðnpx=LmÞdx.

The contribution of each mode towards resisting membrane deformation may be analysed in terms of n2jvnj since the
tensile restoring force, Tq2Z=qx2, is proportional to n2 for each mode. It is found that the contribution of the third mode
(dashed line) is significant in the very low frequency region, while the second mode (solid line) is more important for
f40.05. The contribution of the higher order modes means that the membrane is actually stronger than what the single-
mode approximation implies in Section 2, and that essentially explains the frequency shift in Fig. 6(a). Having said this,
the single-mode approximation still serves the useful purpose of bringing out the important physics shown by Eqs. (13)
and (15).

With the perspective of typical results in Fig. 6(a), the mesh test is now described. The computation domains for
Fig. 6(a) have an upstream and downstream domain length of LU ¼ LD ¼ 2:5h. The number of Gauss–Lobatto grid is M ¼ 8
segments across the cavity depth and 4 for half of the duct height. The mesh density is set to be almost the same in the
horizontal direction in regions with solid walls but higher density is prescribed for the apertures. A total of 100 segments
are used for the whole length of the duct passage. The size of the matrix in Eq. (24) is 56. Mesh convergence test is
conducted by varying M while the relative mesh density in various domains is kept unchanged. For the twin-aperture
design to be discussed below with m ¼ 0.25 and T ¼ 0.013 for each membrane, the TL for two typical frequencies of f ¼ 0.1
and 0.2 are calculated for M ¼ 4, 6, 8, 10, 12 and 16, respectively. Using the results with M ¼ 16 as the accurate solution,
which are TL ¼ 14.7571, 0.9077 dB for the two frequencies, the deviation of the results from the coarser meshes from these
values are given below in the following order M ¼ 4, 6, 8, 10 and 12,

f ¼ 0:1 : DTL ¼ �1:6� 10�2;3:2� 10�4;8:1� 10�5;1:3� 10�5;2:7� 10�6;

f ¼ 0:2 : DTL ¼ �4:3� 10�2;�1:8� 10�3;�9:7� 10�5;�7:7� 10�6:

The rapid convergence is clearly shown. The mesh density of M ¼ 8 is considered to be sufficient and is used in all
subsequent examples.

In the 1D approximation, Eqs. (2a) and (3), the denominator im0ðo�o2
1=oÞ can be seen as a lumped acoustic

impedance for the aperture. For the same mass ratio m0 and first-mode frequency o1, a plate is expected to have the same
performance as a membrane according to the 1D approximation. This equivalence is now examined by the full numerical
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Fig. 7. Comparison between membrane and plate designs: (a) two-aperture design using membrane with T ¼ 0.013 and plates with equivalent level of

B ¼ 2.56�10�4 and 0.88B ¼ 2.26�10�4, all with mass m ¼ 0.25 and (b) twin-plate design with B ¼ 2.26�10�4 as used in (a), simply supported plates

with B ¼ 12.82�10�4, and plate silencer with B ¼ 0.12 [13], also with m ¼ 0.25.
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prediction, and the results are shown in Fig. 7. To achieve the same o1 given by Eqs. (2b) and (3), the plate stiffness B and
membrane tension T should be related by the following expressions:

o1 ¼
ð1:5056pÞ2

L2
m

ffiffiffiffiffiffiffi
B0

m0

s
¼

p
Lm

ffiffiffiffiffiffiffi
T0

m0

s
; T0 ¼ B0

1:50564p2

L2
m

.

In terms of the dimensionless parameters defined in Eq. (16),

T

B
¼

T0h2

B0
¼

1:50564p2

ðLm=hÞ2
. (25)

For the two-membrane design with T ¼ 0.013, and Lm ¼ h used in Fig. 6, the equivalent dimensionless stiffness is
B ¼ 2.56�10�4. Fig. 7(a) shows that the result for such a two-plate design (solid line) is very similar to that of the two-
membrane design (dashed line) with a right-shift of frequencies. The shift indicates the difference in which the higher
order modes of the aperture dynamics influence the outcome for the membranes and the plates. This shift in the low
frequency region is eliminated when B is reduced to 88 percent of the equivalent B predicted by Eq. (25). The result is
shown in open circles. It is interesting to note that the TL for the reduced B also coincides with the plate aperture (solid
line) in the high frequency region instead of conforming to the membrane aperture entirely. In other words, the
performance of the reduced B takes the best of the two other designs and gives the widest stop-band.

Fig. 7(b) compares three types of plate designs. The thick solid line is for the plate aperture with the reduced B shown in
Fig. 7(a), which has the best performance in that group. The line with open circles is also for the twin-plate design but with
simply supported boundary conditions at both ends, which requires a higher value of B ¼ 12.82�10�4 to clear the 10 dB
threshold. The TL curve is almost the same as the clamped plate aperture. The mass ratios for both designs are 0.25. Finally,
the performance of the optimal plate silencer [13], namely a single plate covering the whole cavity length of Lc ¼ 5h with
air in the cavity, is included as the dashed line for comparison. The mass ratio used for this plate silencer is also m ¼ 0.25,
its boundary condition is also simply supported, and the optimal bending stiffness to achieve a broad stop-band is B ¼ 0.12.
This optimal bending stiffness can be reduced when a clamped, non-uniform plate is used [14], but it is structurally much
more complicated. The bending stiffness for the plate silencer is about 0.12/0.001282 ¼ 94 times higher than that for the
twin-plate, flute-like silencer of the same geometry. However, when the mass ratio is increased, say to 1.0, the flute-like
silencer would suffer performance reductions while the performance of the plate silencer is less sensitive to changes in m

provided that m is not too high. More detailed discussion on the material property is given below.
The reason why the cavity is filled with a light gas like helium is two-fold. First, its fast speed of sound than air creates

the type-1 HQ resonance. Obviously, a gas with a speed of sound lower than that in air, or a long bypass filled with air, can
do the same job. The second function of the light gas is its low inertia. This can be seen in Eqs. (13b) and (15) where the
cavity inertia term is lumped together with other system inertia terms in the denominator for the first resonance frequency
approximation. Judging from this expression, an increased gas density may be compensated by a smaller aperture mass.
This proposition is tested and the results are shown in Fig. 8 where the TL spectra of various membrane masses are
compared. The baseline case of helium cavity with twin-membrane design of m ¼ 0.25, T ¼ 0.013 is shown in a thin solid
line. When the cavity gas is replaced by a gas of density rc=r0 ¼ 0:3 and its corresponding speed of sound of cc=c0 ¼ 1:543
with g ¼ 7/5, such that the same static pressure P ¼ grcc2

c is maintained, the trough of the TL curve (thick solid line) is
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pulled down below 10 dB. When the membrane mass is reduced to 0 (the line with open circles), the trough is raised but is
still below 10 dB. When m is further reduced to �0.19 (dashed line), a level that would make the denominator of Eq. (15)
the same as that of the helium cavity, the trough is raised further up and the whole TL pattern is very similar to that of the
helium cavity. Note that the change of speed of sound in the cavity causes the resonance frequencies to shift. In fact, the
system performance at frequencies just above the first resonance peak is dominated by the system mass, and a reduced
system mass can enhance the wave reflection performance.

Before concluding this section, it is useful to discuss the dimensional material properties implied by the predicted
dimensionless parameters. Based on the dimensionless mass, tension and stiffness defined in Eq. (16), the dimensional
tensile stress s and Young’s modulus E are derived below using the membrane or plate thickness s ¼ mr0h=rm and a unit
width (in the direction perpendicular to the 2D plane) for the membrane or plate,

T0 ¼ Tr0c2
0h; s ¼ T0

s
¼

Tr0c2
0hrm

mr0h
¼

T

m
rmc2

0,

B0 ¼ Br0c2
0h3
¼

1

12
Es3; E ¼

12B

m
�
r3

m

r3
0

r0c2
0.

Since the required dimensionless values for T/m and B/m are high, the crucial parameter for a membrane material is its
tensile strength over density, smax=rm, and that for a plate is E=r3

m. Exotic materials such as PVC foams exist but it is more
convenient to use usual metal alloys as their properties are more easily quantified and the material more readily available.
Aluminum alloy is used here for its reasonable tensile strength (max
500 MPa) and Young’s modulus (
70 GPa)
considering its light weight. For the earlier study of drum-like silencer with the same cavity geometry as used here, the
dimensionless tensile stress required for m ¼ 1 is T ¼ 0.475. This gives a stress level of s ¼ ðT=mÞrmc2

0 ¼

ð0:475=1Þ � 2700� 3402 Pa, or 148 MPa, which is within the ideal tensile strength of the best alloy in the aluminum
group, but it may exceed the practical limit of some of them due to impurity etc. For plate silencer, earlier study [13]
requires B ¼ 0.1291 for m ¼ 1, and this is translated into E ¼ 2.35�1015 Pa, which is 33 557 times the available Young’s
modulus of aluminum.

In the current study, the membrane tension is much reduced, take m ¼ 0:25; T ¼ 0:013 for example, the required
dimensional stress is 16.23 MPa, less than 10 percent of the level required in the drum-like silencer. For the two-plate
aperture design, the requirement of m ¼ 0:25;B ¼ 2:26� 10�4 means a Young’s modulus of 16 450 GPa, which is
235 times the current material limit. In summary, the twin-membrane design has reduced the requirement on the tensile
strength as well as the actual tensile force required, while the plate design is still beyond the reach of common bulk
materials.

4. Conclusions
1.
 When a light gas fills a bypass cavity, its faster speed of sound creates a traditional Herschel–Quincke resonance in
which the temporal path difference between the main duct segment and the bypass is equal to half of an oscillation
period. The nature of the HQ resonance means that it is not suitable for the abatement of very low frequencies due to its
long wavelength.
2.
 When the bypass is covered by two impervious membrane apertures, so that the light gas may not leak out, the system
exhibits another resonance which can be located at very low frequencies. The frequency is determined by the tensile
stress applied on the membrane and the system mass which includes three contributions: the air in the main duct,
the gas in the cavity and the membrane mass. The resonance is similar to the second type of HQ resonance in which the
combined acoustic path in the duct and bypass forms full periods (when they have the same cross section). The
mechanism differs from the earlier use of helium in a drum-like silencer [11].
3.
 The transmission loss performance depends crucially on the trough between the two resonance peaks. Since resonance
peaks are frequencies where the system mass balances system stiffness, which can be written symbolically as
mioþ K=io ¼ 0, the system performance between two neighbouring peaks depends on the imbalance of the two
effects when frequency deviates from the resonance frequency. When both mass and stiffness are low, the imbalance
would be maintained at a low level and system performance would be high. When the cavity is filled with a light gas,
the required tension is very low for a given system mass. The low tension helps the low frequency performance. The low
gas density helps the system performance from medium to high frequencies. Together, the system impedance seen by
the incident wave is maintained at a low level, and the trough between the two resonance peaks can be elevated to a
certain high level.
4.
 The device, which is called a flute-like silencer featuring two identical membrane or plate apertures, is found to perform
well in the low frequency region when compared with the drum-like silencer [12] and plate silencer [13] developed
earlier. The transmission loss spectrum features two peaks, contrasting with the three-peak spectrum seen in the drum-
like or plate silencers. The very short aperture length means that the required membrane tension, or plate stiffness, is
much lower than those required in the drum-like or plate silencer. For the membrane design, the parametric study
shows that it is well within the material limits while the plate aperture is still beyond the limits of existing bulk
materials.
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